iso standard online
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202211142192.0 (22)申请日 2022.09.20 (71)申请人 深圳信息职业 技术学院 地址 518000 广东省深圳市龙岗区龙城街 道龙翔大道 2188号 (72)发明人 殷光强 唐飞 梁杰 王新中 王治国 游长江 石文武 李耶 侯少麒 (74)专利代理 机构 深圳中一联合知识产权代理 有限公司 4 4414 专利代理师 李木燕 (51)Int.Cl. G06V 10/80(2022.01) G06V 10/82(2022.01) G06V 10/44(2022.01)G06V 10/52(2022.01) (54)发明名称 图像目标的检测方法、 装置及终端设备 (57)摘要 本申请提供了一种图像目标的检测方法、 装 置及终端设备, 适用于图像融合技术领域, 该方 法包括: 将待检测图像输入特征融合网络模型, 特征融合网络模型包括第一网络模型和第二网 络模型; 第一网络模型对待检测图像进行特征提 取, 得到多尺度的图像卷积特征层; 将多尺度的 图像卷积特征层输入第二网络模 型, 由第二网络 模型进行池化处理, 得到第二网络模 型输出的多 尺度的图像池化特征层, 并将多尺度的图像池化 特征层反馈至第一网络模型; 将第一网络模型的 输出作为第二网络模型的输入, 由第二网络模型 进行池化处理, 输出待检测图像的目标特征。 该 方法能够实现对 特征信息进行优化、 提高特征信 息利用度, 以降低目标检测难度; 其具有较强的 易用性与实用性。 权利要求书2页 说明书11页 附图4页 CN 115512194 A 2022.12.23 CN 115512194 A 1.一种图像目标的检测方法, 其特 征在于, 包括: 将待检测图像输入特征融合网络模型, 所述特征融合网络模型包括第 一网络模型和第 二网络模型; 所述第一网络模型对所述待检测图像进行 特征提取, 得到多尺度的图像卷积特 征层; 将多尺度的图像卷积特征层输入所述第 二网络模型, 由所述第 二网络模型进行池化处 理, 得到所述第二网络模型输出 的多尺度的图像池化特征层, 并将多尺度的所述图像池化 特征层反馈 至所述第一网络模型; 将所述第一网络模型的输出作为所述第 二网络模型的输入, 由所述第 二网络模型进行 池化处理, 输出所述待检测图像的目标 特征。 2.如权利要求1所述的图像目标的检测方法, 其特征在于, 所述将多尺度的图像卷积特 征层输入所述第二网络模型, 由所述第二网络模型进行池化处理, 得到所述第二网络模型 输出的多尺度的图像池化特 征层, 包括: 将所述第一网络模型的最深层图像卷积特征层、 相邻 于所述最深层图像卷积特征层的 浅一层图像卷积特征层输入所述第二网络模型, 由所述第二网络模型进行池化处理, 得到 所述第二网络模型输出的最深层的图像池化特 征层; 其中, 所述第二网络模型包括至少三个不同尺度的图像池化特 征层; 在所述第二网络模型中, 任意两个相邻图像池化特征层之间, 所述图像池化特征层的 尺度小于相邻浅一层图像池化特 征层的尺度。 3.如权利要求2所述的图像目标的检测方法, 其特征在于, 所述将多尺度的图像卷积特 征层输入所述第二网络模型, 由所述第二网络模型进行池化处理, 得到所述第二网络模型 输出的多尺度的图像池化特 征层, 包括: 将所述相邻于所述最深层图像卷积特征层的浅一层图像卷积特征层作为当前图像卷 积特征层; 将所述第一网络模型的当前图像卷积特征层、 所述第 一网络模型的浅一层图像卷积特 征层和所述第二网络模型的深一层图像池化特征层输入所述第二网络模型, 由所述第二网 络模型进行池化处 理, 得到所述第二网络模型输出的当前图像池化特 征层; 针对所述第 一网络模型的浅一层图像卷积特征层, 返回执行所述将所述第 一网络模型 的当前图像卷积特征层、 所述第一网络模型的浅一层图像卷积特征层和所述第二网络模型 的深一层图像池化特征层输入所述第二网络模型, 由所述第二网络模型进行池化处理, 直 到所述第一网络模型的所有图像卷积特 征层均完成池化处 理。 4.如权利要求1或3所述的图像目标的检测方法, 其特征在于, 所述将多尺度的所述图 像池化特 征层反馈 至所述第一网络模型, 包括: 将所述第二网络模型的图像池化特征层分别反馈至所述第一网络模型的相同尺度的 图像卷积特 征层。 5.如权利要求1所述的图像目标的检测方法, 其特征在于, 所述第 一网络模型对所述待 检测图像进行 特征提取, 得到多尺度的图像卷积特 征层, 包括: 所述第一网络模型对所述待检测图像进行下采样, 得到对应于所述第 一网络模型的当 前图像卷积特 征层, 其中, 所述第一网络模型包括至少三个不同尺度的图像卷积特 征层; 所述第一网络模型对所述当前图像卷积特征层进行下采样, 得到所述第 一网络模型的权 利 要 求 书 1/2 页 2 CN 115512194 A 2深一层图像卷积特 征层; 针对深一层图像卷积特征层, 返回执行所述第 一网络模型对所述当前图像卷积特征层 进行下采样, 直至所述第一网络模型的所有图像卷积特 征层均完成下采样; 在所述第一网络模型中, 任意两个相邻图像卷积特征层之间, 所述图像卷积特征层的 尺度小于相邻浅一层图像卷积特 征层的尺度。 6.一种图像目标的检测装置, 其特 征在于, 包括: 输入模块, 用于将待检测图像输入特征融合网络模型, 所述特征融合网络模型包括第 一网络模型和第二网络模型; 提取模块, 用于所述第一网络模型对所述待检测图像进行特征提取, 得到多尺度的图 像卷积特 征层; 第一处理模块, 用于将多尺度的图像卷积特征层输入所述第二网络模型, 由所述第二 网络模型进行池化处理, 得到所述第二网络模型输出 的多尺度的图像池化特征层, 并将多 尺度的所述图像池化特 征层反馈 至所述第一网络模型; 第二处理模块, 用于将所述第一网络模型的输出作为所述第二网络模型的输入, 由所 述第二网络模型进行池化处 理, 输出所述待检测图像的目标 特征。 7.一种终端设备, 其特征在于, 所述终端设备包括存储器、 处理器, 所述存储器上存储 有可在所述处理器上运行的计算机程序, 所述处理器执行所述计算机程序时实现如权利要 求1至5任一项所述图像目标的检测方法的步骤。 8.一种计算机可读存储介质, 所述计算机可读存储介质存储有计算机程序, 其特征在 于, 所述计算机程序被处理器执行时实现如权利要求 1至5任一项 所述图像目标的检测方法 的步骤。权 利 要 求 书 2/2 页 3 CN 115512194 A 3
专利 图像目标的检测方法、装置及终端设备
文档预览
中文文档
18 页
50 下载
1000 浏览
0 评论
309 收藏
3.0分
赞助3元下载(无需注册)
温馨提示:本文档共18页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助3元下载
本文档由 人生无常 于
2024-03-18 04:40:40
上传分享
举报
下载
原文档
(722.4 KB)
分享
友情链接
T-WHDQHX 004—2022 电气成套设备制造业数字化车间 通用要求.pdf
DB51-T 3050-2023 四川省行政执法案件编号规则 四川省.pdf
GB-T 32488-2016 球墨铸铁管和管件 水泥砂浆内衬密封涂层.pdf
等保三级-安全技术-数据安全.doc
GB-T 29070-2012 无损检测 工业计算机层析成像 CT 检测 通用要求.pdf
T-SZUAVIA 001—2021 低慢小无人机探测反制系统通用要求.pdf
GB-T 41454-2022 实景影像数据产品质量检查与验收.pdf
RB-T 174-2021(修订) 司法鉴定-法庭科学机构能力专业要求(修订).pdf
T-LPCX 01—2020 黎平香茶.pdf
中华人民共和国电子签名法 2019.pdf
DB23-T 2575—2020 智慧城市建设运营管理与运行维护 黑龙江省.pdf
GB-T 23997-2009 室内装饰装修用溶剂型聚氨酯木器涂料.pdf
GB-T 33834-2017 微束分析 扫描电子显微术 生物试样扫描电子显微镜分析方法.pdf
火绒安全 2021终端安全情报年鉴.pdf
GB-T 42109-2022 供应链资产管理体系实施指南.pdf
GB-T 30503-2014 船用制氮装置通用技术条件.pdf
GB-T 31879-2015 道路车辆 牵引座通用技术条件.pdf
T-SCGS 313002—2023 医用内窥镜 内窥镜荧光摄像系统影像质量评价规范.pdf
GB-T 41996-2022 开关设备数字化车间运行管理模型指南.pdf
GBT 41575-2022 未成年人互联网不健康内容分类与代码.pdf
1
/
3
18
评价文档
赞助3元 点击下载(722.4 KB)
回到顶部
×
微信扫码支付
3
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。